Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

and(tt, X) → activate(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = 2 + 2·x1 + x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 2·x1   
POL(n__take(x1, x2)) = x1 + 2·x2   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x1 + 2·x2   
POL(tt) = 2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

length(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 2 + 2·x1   
POL(n__take(x1, x2)) = x1 + 2·x2   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x1 + 2·x2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(0, IL) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + x2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ UsableRulesProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ UsableRulesReductionPairsProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
The following rules are removed from R:

take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = x1   
POL(TAKE(x1, x2)) = x1 + x2   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(n__take(x1, x2)) = 2·x1 + x2   
POL(n__zeros) = 2   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2·x1 + x2   
POL(zeros) = 2   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
QDP
                                ↳ DependencyGraphProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ DependencyGraphProof
QDP
                                    ↳ UsableRulesProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ UsableRulesProof
QDP
                                        ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ UsableRulesReductionPairsProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTH(x1)) = x1   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(n__take(x1, x2)) = x1 + x2   
POL(n__zeros) = 0   
POL(s(x1)) = 2·x1   
POL(take(x1, x2)) = x1 + x2   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
QDP
                                ↳ RuleRemovalProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

activate(X) → X
zerosn__zeros

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTH(x1)) = x1   
POL(activate(x1)) = 1 + 2·x1   
POL(cons(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(n__take(x1, x2)) = 2 + x1 + 2·x2   
POL(n__zeros) = 0   
POL(take(x1, x2)) = 2 + x1 + 2·x2   
POL(zeros) = 1   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ MNOCProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [15] to enlarge Q to all left-hand sides of R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
QDP
                                        ↳ RuleRemovalProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(n__zeros)
activate(n__take(x0, x1))
take(x0, x1)
zeros

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

activate(n__take(X1, X2)) → take(activate(X1), activate(X2))

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTH(x1)) = x1   
POL(activate(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(n__take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(n__zeros) = 0   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
QDP
                                            ↳ UsableRulesProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(n__zeros)
activate(n__take(x0, x1))
take(x0, x1)
zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(n__zeros)
activate(n__take(x0, x1))
take(x0, x1)
zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

take(x0, x1)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ Narrowing
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(n__zeros)
activate(n__take(x0, x1))
zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH(cons(N, L)) → LENGTH(activate(L)) at position [0] we obtained the following new rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
QDP
                                                        ↳ UsableRulesProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(n__zeros)
activate(n__take(x0, x1))
zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
QDP
                                                            ↳ QReductionProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(n__zeros)
activate(n__take(x0, x1))
zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

activate(n__zeros)
activate(n__take(x0, x1))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
QDP
                                                                ↳ Rewriting
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule LENGTH(cons(y0, n__zeros)) → LENGTH(zeros) at position [0] we obtained the following new rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Rewriting
QDP
                                                                    ↳ UsableRulesProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
QDP
                                                                        ↳ QReductionProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))

R is empty.
The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

zeros



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
QDP
                                                                            ↳ Instantiation
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros)) we obtained the following new rules:

LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ UsableRulesReductionPairsProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ MNOCProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ UsableRulesProof
                                                                      ↳ QDP
                                                                        ↳ QReductionProof
                                                                          ↳ QDP
                                                                            ↳ Instantiation
QDP
                                                                                ↳ NonTerminationProof
                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))

The TRS R consists of the following rules:none


s = LENGTH(cons(0, n__zeros)) evaluates to t =LENGTH(cons(0, n__zeros))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LENGTH(cons(0, n__zeros)) to LENGTH(cons(0, n__zeros)).




We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                        ↳ UsableRulesProof
QDP
                            ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros


s = LENGTH(activate(n__zeros)) evaluates to t =LENGTH(activate(n__zeros))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

LENGTH(activate(n__zeros))LENGTH(zeros)
with rule activate(n__zeros) → zeros at position [0] and matcher [ ]

LENGTH(zeros)LENGTH(cons(0, n__zeros))
with rule zeroscons(0, n__zeros) at position [0] and matcher [ ]

LENGTH(cons(0, n__zeros))LENGTH(activate(n__zeros))
with rule LENGTH(cons(N, L)) → LENGTH(activate(L))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.